Electrically Tunable Slow Light Using Graphene Metamaterials

2018 
Metamaterials with classical analogues of electromagnetically induced transparency open new avenues in photonics for realizing smaller, more efficient slow light devices without quantum approaches. However, most of the metamaterial-based slow light devices are passive, which limits their practical applications. Here, by combining diatomic metamaterials with a gated single-layer graphene, we demonstrate that the group delay of terahertz light can be dynamically controlled under a small gate voltage. Using a two coupled harmonic oscillators model, we show that this active control of group delay is made possible by an effective control of the dissipative loss of the radiative dark resonator by varying the graphene’s optical conductivity. Our work may provide opportunities in the design of various applications such as compact slow light devices and ultrasensitive sensors and switches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    100
    Citations
    NaN
    KQI
    []