Analysis on the Characteristics of Air Pollution in China during the COVID-19 Outbreak

2021 
The COVID-19 pandemic poses a serious global threat to human health. In China, the government immediately implemented lockdown measures to curb the spread of this virus. These measures severely affected transportation and industrial production across the country, resulting in a significant change in the concentration of air pollutants. In this study, the Euclidean distance method was used to select the most similar meteorological field during the COVID-19 lockdown period. Changes in the concentration of air pollutants in China were analyzed under similar meteorological background conditions. Results indicate that, compared with data from 2015–2019, air quality in China significantly improved; with the exception of ozone (O3), the concentration of major air pollutants declined. Compared with baseline conditions, the reduction of air pollutants in China from 25 January to 22 February 2020 (Period 2) was the most significant. In particular, NO2 decreased by 41.7% in the Yangtze River Delta. In Period 2, the reduction of air pollutants in areas other than Hubei gradually decreased, but the reduction of NO2 in Wuhan reached 61.92%, and the reduction of air pollutants in various regions after February 23 was significantly reduced. By excluding the influence of meteorological factors and calculating the contribution of human activities to atmospheric pollutants by linear fitting, in Period 2 the effect of artificial controls on NO2 in Wuhan attained 30.66%, and reached 48.17% from 23 February to 23 March (Period 3). Results from this investigation provides effective theoretical support for pollution prevention and control in China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    6
    Citations
    NaN
    KQI
    []