The role of activating transcription factor 6 in hydroxycamptothecin-induced fibroblast autophagy and apoptosis.

2021 
Background The over-proliferation of fibroblasts is considered to be the main cause of scar adhesion after joint surgery. Hydroxycamptothecin (HCPT), though as a potent antineoplastic drug, shows preventive effects on scar adhesion. This study aimed to investigate the role of activating transcription factor 6 (ATF-6) in the HCPT-induced inhibition of fibroblast viability. Methods The cell counting kit-8 (CCK-8) assay, western blot analysis, lentivirus-mediated gene silencing, transmission electron microscopy (TEM) analysis, immunofluorescent staining for autophagy-related protein light chain 3 (LC3) were used to explore the effect of HCPT on triggering fibroblast apoptosis and inhibiting fibroblast proliferation, and the involvement of possible signaling pathways. Results It was found that HCPT exacerbated fibroblast apoptosis and repressed its proliferation. Subsequently, endoplasmic reticulum stress (ERS)-related proteins were determined by western blot prior to ATF6 p50 was screened out and reexamined after it was silenced. As a result, ATF6-mediated ERS played a role in HCPT-induced fibroblast apoptosis. Autophagy-related proteins and autophagosomes were detected after the HCPT administration using western blot and TEM analyses, respectively. Autophagy was activated after the HCPT treatment. With the co-treatment of autophagy inhibitor 3-methyladenine (3-MA), both the western blot analysis and the CCK-8 assay showed inhibited autophagy, which indicated that the effect of HCPT on fibroblast proliferation was partially reversed. Besides, the LC3 immunofluorescence staining revealed suppressed autophagy after silencing ATF6 p50. Conclusion Our results demonstrate that HCPT acts as a facilitator of fibroblast apoptosis and inhibitor of fibroblast proliferation for curbing the postoperative scar adhesion, in which the ATF6-mediated ERS pathway and autophagy are involved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []