Effect of Mg Treatment on Refining the Microstructure and Improving the Toughness of the Heat-Affected Zone in Shipbuilding Steel

2018 
The effect of Mg treatment on the microstructure and toughness of the heat-affected zone (HAZ) of shipbuilding steel after high-heat-input welding was investigated via laboratory and industrial testing. The welding process and Charpy impact tests were also carried out to evaluate the HAZ toughness of steel plates. First, typical inclusion characteristics were characterised with an ASPEX PSEM Explorer. Then, confocal laser scanning microscopy (CLSM) was used to observe the diameters of austenite grains under different holding times. The results showed that when the addition of microalloy elements were in the order of Al–Mg–Ti, this had an effect on dispersing inclusions, the largest proportion of which were micro-inclusions that had a particle size range of 1.0–1.5 μm. This accounted for 25.4% of the total inclusions, which was the highest amount. The micro inclusion particle size that was mainly distributed in the range of 0.5–3.5 μm accounted for 82.8% of all the micro-inclusions. The inclusion structure induced intragranular acicular ferrite (IAF) in austenite as follows: MgO and Al2O3 formed the core and Ti2O3 adhered to the Al–Mg complex inclusions to produce smaller particle sizes and dispersions of Al, Mg, and Ti complex inclusions. The 40-mm-thick plate obtained in the industrial test after welding had an average impact absorbed energy 2 mm from the weld joint in the heat-affected zone of 198.9 J at −20 °C, while the welding heat input was 150 kJ/cm, compared with the parent material’s low-temperature performance, which exceeded 88%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    5
    Citations
    NaN
    KQI
    []