Application of Fatigue Damage Evaluation Considering Linear Hydroelastic Effects of Very Large Container Ships Using 1D and 3D Structural Models

2021 
Owing to the increasing size and speed of ships to ensure economic efficiency, the hydroelastic phenomena of the hull have emerged as an important factor to be considered in the evaluation of strength during the design stage of current ship building procedures. In this study, we established a method to evaluate fatigue strength with linear spring effects using a 1D (one-dimensional) beam model and a 3D (three-dimensional) global Finite Element (FE) model. Firstly, FSI (fluid–structure interaction) analysis was carried out using the 1D beam model of a 15,000 twenty equivalent unit (TEU) container ship. In this step, the method proposed was to calculate the stress RAO (Response Amplitude Operator) of the hot spot points using only the hull girder load from the beam model. Next, a modal superposition analysis was carried out using the 3D global FE model that was directly calibrated to the fatigue damage of the hot spot points. Based on these stress transfer functions with hydroelastic effects, spectral fatigue analysis was carried out, and the portion of linear springing effects in the fatigue damage was analyzed, respectively. These results were compared with the rigid-body-based results in the final design stage. Finally, the applicability of the proposed method at the actual design stage is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []