Neurotransmitter alterations in the anterior cingulate cortex in Crohn's disease patients with abdominal pain: A preliminary MR spectroscopy study

2018 
Abstract Purpose Crohn's disease (CD) has been known to cause both abdominal pain alongside functional and structural alterations in the central nervous system (CNS) in affected patients. This study seeks to determine the alternations of metabolites in the bilateral anterior cingulate cortex (ACC) of CD patients with abdominal pain by using proton magnetic resonance spectroscopy ( 1 H-MRS) to further explore the neural mechanism. Methods Sixteen CD patients with abdominal pain and 13 CD patients without abdominal pain, were recruited alongside 20 healthy controls (HCs) for this study. Clinical evaluations, including the 0–10 Visual Analogue Scale (VAS) of pain, Hospital Anxiety and Depression Scale (HADS) and Crohn's Disease Activity Index (CDAI), were evaluated prior to MR scanning. This study selected the bilateral ACC as the region of interest (ROI). The metabolites of the bilateral ACC were quantitatively analyzed by LCModel and Gannet. A independent sample t -test and one-way analysis of variance (ANOVA) were performed for statistical analysis. Spearman correlation analyses were performed to examine the relationship between the metabolite levels and clinical evaluations. Results The results indicated that CD patients with abdominal pain exhibited significantly higher levels of Glutamate (Glu)/(creatine + phosphocreatine, total creatine, tCr) over CD patients without abdominal pain, and HCs (p = 0.003, 0.009, respectively) in the bilateral ACC. The level of (Glutamate + Glutamine, Glx)/tCr of pain CD group was higher than non-pain CD group (p = 0.022). Moreover, within the pain CD group, Glu/tCr and Glx/tCr levels correlated strongly with the VAS scores of pain (ρ = 0.86, 0.59 respectively, p  Conclusion The neural mechanism of CD patients with abdominal pain in pain processing is tightly associated with neurochemical metabolites. An imbalance in Glu and GABA may play a key role in abdominal pain processing for patients with CD. This mechanism of pain may associate with the intestinal microbiota on the brain-gut axis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    10
    Citations
    NaN
    KQI
    []