Biobjective Task Scheduling for Distributed Green Data Centers

2020 
The industry of data centers is the fifth largest energy consumer in the world. Distributed green data centers (DGDCs) consume 300 billion kWh per year to provide different types of heterogeneous services to global users. Users around the world bring revenue to DGDC providers according to actual quality of service (QoS) of their tasks. Their tasks are delivered to DGDCs through multiple Internet service providers (ISPs) with different bandwidth capacities and unit bandwidth price. In addition, prices of power grid, wind, and solar energy in different GDCs vary with their geographical locations. Therefore, it is highly challenging to schedule tasks among DGDCs in a high-profit and high-QoS way. This work designs a multiobjective optimization method for DGDCs to maximize the profit of DGDC providers and minimize the average task loss possibility of all applications by jointly determining the split of tasks among multiple ISPs and task service rates of each GDC. A problem is formulated and solved with a simulated-annealing-based biobjective differential evolution (SBDE) algorithm to obtain an approximate Pareto-optimal set. The method of minimum Manhattan distance is adopted to select a knee solution that specifies the Pareto-optimal task service rates and task split among ISPs for DGDCs in each time slot. Real-life data-based experiments demonstrate that the proposed method achieves lower task loss of all applications and larger profit than several existing scheduling algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    28
    Citations
    NaN
    KQI
    []