Improving stroke detection via Correlation Tensor MRI

2021 
Noninvasively detecting and characterizing modulations in cellular scale micro-architecture is a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. However, the sources of the contrasts observed in conventional dMRI in general and in ischemia in particular are still highly debated since the markers are only surrogate reporters of the underlying microstructure. Here, we present Correlation Tensor MRI (CTI), a method that rather than measuring diffusion, harnesses diffusion correlations as its source of contrast. We show that CTI can resolve the sources of diffusional kurtosis, which in turn, provide dramatically enhanced specificity and sensitivity towards ischemia. In particular, the sensitivity towards ischemia nearly doubles, both in grey matter and white matter, and unique signatures for neurite beading, cell swelling, and edema are inferred from CTI. The enhanced sensitivity and specificity endowed by CTI bodes well for future applications in biomedicine, basic neuroscience, and in the clinic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []