Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis

2021 
Quantum chemical analysis is presented, motivated by Gree and co-workers’ observation of salt effects [Adv. Synth. Catal. 2006, 348, 1149–1153] for SN2 fluorination of KF in ionic liquids (ILs). We examine the relative promoting capacity of KF in [bmim]PF6 vs. [bmim]Cl by comparing the activation barriers of the reaction in the two ILs. We also elucidate the origin of the experimentally observed additional rate acceleration in IL [bmim]PF6 achieved by adding KPF6. We find that the anion PF6− in the added salt acts as an extra Lewis base binding to the counter-cation K+ to alleviate the strong Coulomb attractive force on the nucleophile F−, decreasing the Gibbs free energy of activation as compared with that in its absence, which is in good agreement with experimental observations of rate enhancement. We also predict that using 2 eq. KF together with an eq. KPF6 would further activate SN2 fluorination
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []