Successful Hematopoietic Stem Cell Transplantation Using an Immunosuppressive Conditioning Regimen in Ten Patients with Severe Congenital Neutropenia: A Single-Institute Experience

2016 
Severe congenital neutropenia (SCN) is a rare heterogeneous genetic disorder characterized by severe chronic neutropenia, with absolute neutrophil counts below 0.5×109/L, and by recurrent bacterial infections from early infancy. Granulocyte colony-stimulating factor (G-CSF) is widely used for the treatment of neutropenia in patients with SCN. However, the long-term G-CSF therapy has a relative risk of developing myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The only curative treatment available for SCN patients is hematopoietic stem cell transplantation (HSCT). Recently, HSCTs with reduced intensity conditioning (RIC) regimens have been applied to the treatment of SCN patients without malignant transformation who have become G-CSF refractory. However, the optimal conditions of HSCT for SCN patients have not been established. In this study, we conducted bone marrow cell transplantations (BMT) in ten patients with SCN using an immunosuppressive conditioning regimen to minimize early and late transplant-related morbidity in Hiroshima University Hospital. Ten patients with a total of 11 HSCT procedures in our institution (performed from 2007 to 2015) were enrolled in this study. Four of the ten patients had experienced engraftment failure of the initial HSCT and three of them were referred to our hospital for re-transplantation. Heterozygous mutation inthe ELANE gene was identified in nine of ten patients. These nine patients received BMT less than 10 years of age. All ten patients had recurrently experienced moderate to severe bacterial or fungal infection before HSCT and received temporal or regular administration of G-CSF. Bone marrow cells (BM) were obtained from five HLA-matched related (MRD), three HLA-matched unrelated (MUD), and three HLA-mismatched unrelated (7/8) donors (MMUD), respectively. The conditioning regimen basically consisted of fludarabine (100 to 125 mg/m2), cyclophosphamide (100 to 150 mg/kg), melphalan (70 to 90 mg/m2), total body irradiation (3 to 3.6 Gy), and/or anti-thymocyte globulin (10 to 12 mg/kg). Short-term methotrexate and tacrolimus were administered for the prophylaxis of graft-versus-host disease (GVHD). Engraftment of neutrophils was successfully observed within 24 days of post-transplantation in all patients. All patients achieved complete chimerism at the time of engraftment. Two patients who underwent BMT from MRD and one patient who underwent BMT from MUD showed the gradual decrease of donor-derived cells. Donor lymphocyte infusion treatment successfully achieved the complete chimerism or stable mixed chimerism in these 3 patients. Although 3 patients experienced the acute GVHD (Grade I-II), the addition of glucocorticoids to tacrolimus prevented the extension of acute GVHD. Only one patient developed mild chronic GVHD presenting limited type of skin involvement. All patients are alive for 9 months to 9 years after HSCT with no signs of severe infections or transplantation-related morbidity. Our results demonstrate that BMT together with a sufficient immunosuppressive conditioning regimen may be a feasible and effective treatment for SCN patients, irrespective of initial engraftment failure. Although our results through the small number of cohort is limited to conclude, the BMT with the optimal donors may lead to the increased opportunity for lower risk of SCN patients especially at younger age as a curative treatment. The further analyses of accumulated cases are necessary to assess the efficacy, safety, and less late adverse effects related to HSCT including fertility. Disclosures No relevant conflicts of interest to declare.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []