The complete genome sequence of Indian sheeppox vaccine virus and comparative analysis with other capripoxviruses.

2021 
Abstract Sheeppox virus (SPPV) is responsible for a significant economic loss to sheep husbandry in enzootic regions of Africa, the Middle East, and Asia including the Indian subcontinent. In this study, we present the complete genome sequence of SPPV vaccine strain SPPV-Srin38/00 from India determined by next-generation sequencing (NGS) using Illumina technology. The attenuated Srinagar vaccine strain of SPPV (SPPV-Srin38/00) was developed by serial passaging the virus initially in lamb testes (LT) cells followed by Vero cell line. The SPPV-Srin38/00 virus has a genome size of 150, 103 bp, which encodes for 147 functional putative genes and consists of a central coding region flanked by two identical 2353 bp inverted terminal repeats (ITRs). Comparative phylogenetic analysis based on complete genome sequences of Capripoxviruses formed three distinct groups each for SPPV, GTPV, and LSDV with clustering of SPPV-Srin38/00 strain with SPPV-A strain. Nine ORFs of SPPV-Srin38/00 namely SPPV-Srin_002/SPPV-Srin_155, SPPV-Srin_004/SPPV-Srin_153, SPPV-Srin_009, SPPV-Srin_013, SPPV-Srin_026, SPPV-Srin_132, and SPPV-Srin_136 were found to be fragmented as compared to LSDV, whereas only one ORF (such as SPPV-Srin_136) was found to be fragmented as compared to GTPV. SPPV genomes, including the SPPV-Srin38/00 strain, shared 99.78-99.98% intraspecies nucleotide identity, indicating that SPPV strains have extremely low genetic diversity. The strain shared 96.80-97.08% and 97.11-97.61% nt identity with GTPV and LSDV strains, respectively. Its ORFs 016, 021, 022, 130 and 138 are the least identical ORFs among three species of the genus Capripoxvirus with 72.5-93% aa identity to GTPV and LSDV strains and may be potentially used for differentiation of CaPV species. This study may contribute to a better understanding of the epidemiology and evolution of capripoxviruses as well as the development of specific detection methods, better expression vectors, and vaccines with improved safety and efficacy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []