Effect of Co and Mg doping at Cu site on structural, magnetic and dielectric properties of α-Cu2V2O7.

2021 
We have studied the effect of doping of both magnetic (Co) and nonmagnetic (Mg) ions at the Cu site on phase transition in polycrystalline α-Cu2V2O7through structural, magnetic, and electrical measurements. x-ray diffraction reveals that Mg doping triggers an onset of α- to β-phase structural transition in Cu2-xMgxV2O7above a critical Mg concentration xc=0.15, and both the phases coexist up to x=0.25. Cu2V2O7possesses a non-centrosymmetric(NCSM) crystal structure and antiferromagnetic (AFM) ordering along with a non-collinear spin structure in the α phase, originated from the microscopic Dzyaloshinskii-Moriya(DM) interaction between the neighboring Cu spins. Accordingly, a weak ferromagnetic behavior has been observed up to x=0.25. However, beyond this concentration, Cu2-xMgxV2O7exhibits complex magnetic properties. A clear dielectric anomaly is observed in α-Cu2-xMgxV2O7around the magnetic transition temperature, which loses its prominence with the increase in Mg doping. The analysis of experimental data shows that the magnetoelectric coupling is nonlinear, which is in agreement with the Landau theory of continuous phase transitions. Co doping, on the other hand, initiates a sharp α to β phase transition around the same critical concentration xc=0.15 in Cu2-xCoxV2O7but the ferromagnetic behavior is very weak and can be detected only up to x=0.10. We have drawn the magnetic phase diagram which indicates that the rate of suppression in transition temperature is the same for both types of doping, magnetic (Co) and nonmagnetic (Zn/Mg).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []