Pharmacological and simulated exercise cardiac stress tests produce different ischemic signatures in high-resolution experimental mapping studies.

2021 
Abstract Objective Test the hypothesis that exercise and pharmacological cardiac stressors create different electrical ischemic signatures. Introduction Current clinical stress tests for detecting ischemia lack sensitivity and specificity. One unexplored source of the poor detection is whether pharmacological stimulation and regulated exercise produce identical cardiac stress. Methods We used a porcine model of acute myocardial ischemia in which animals were instrumented with transmural plunge-needle electrodes, an epicardial sock array, and torso arrays to simultaneously measure cardiac electrical signals within the heart wall, the epicardial surface, and the torso surface, respectively. Ischemic stress via simulated exercise and pharmacological stimulation were created with rapid electrical pacing and dobutamine infusion, respectively, and mimicked clinical stress tests of five 3-minute stages. Perfusion to the myocardium was regulated by a hydraulic occluder around the left anterior descending coronary artery. Ischemia was measured as deflections to the ST-segment on ECGs and electrograms. Results Across eight experiments with 30 (14 simulated exercise and 16 dobutamine) ischemic interventions, the spatial correlations between exercise and pharmacological stress diverged at stage three or four during interventions (p  Conclusion We found significant differences on the epicardium between cardiac stress types using our experimental model, which became more pronounced at the end stages of each test. A possible mechanism for these differences was the larger ST40 potential gradient magnitudes within the myocardium during exercise. The presence of microvascular dysfunction during exercise and its absence during dobutamine stress may explain these differences.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []