The Hummingbird GC-IMS: In Situ Analysis of a Cometary Nucleus

2000 
Comets are of enormous scientific interest for many reasons. They are primitive bodies that date back to the earliest stages of solar system formation and, because of their small size and because they have been stored in the outer reaches of the solar system, their pristine nature has been preserved better than for any other class of body. They are extremely rich in highly volatile elements, many in the form of ices, and are richer in organic matter than any other known solar system body. It is strongly suspected that in addition to their content of primordial solar nebular material, they also incorporate unprocessed matter from the interstellar medium. Impacts by comets occur onto all the planets and satellites, often with major consequences (e.g., the dinosaur extinction event at the KIT boundary), or sometimes just providing a spectacular cosmic event (e.g., the collision of comet Shoemaker-Levy 9 with Jupiter). A mission to analyze a cometary nucleus must be capable of detecting and identifying over 30 molecular species among several different chemical groups. The Hummingbird Mission will rendezvous with, orbit, characterize, and make multiple descents to the nucleus of a comet. Hummingbird will employ a Gas Chromatograph - Ion Mobility Spectrometer (GC-IMS) as part-of a suite of sophisticated instruments for a comprehensive in situ elemental, molecular, and isotopic analysis of the comet.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []