Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices

2019 
Ternary metal oxides with unique mesoporous structures grown on nickel foam are considered as attractive candidates for high-performance supercapacitors because of their fast electron-transport access, rich accessibility of electroactive sites to the electrolyte, shortened ion diffusion path and wonderful synergetic effects of different metallic elements. Herein, a novel three-dimensional porous pentahedron structured aluminium manganese cobalt oxide (AMCO) synthesized via a facile and cost-effective hydrothermal method followed by a short post-annealing process has been reported. A high specific capacity of 923.1 C g−1 at 1 A g−1 as well as good cycling stability and 100% coulombic efficiency after 8000 cycles can be achieved when used as a supercapacitor electrode. In addition, the as-fabricated asymmetric supercapacitor based on the as-prepared AMCO positive electrode and an activated carbon negative electrode exhibits a high energy density of 88.2 W h kg−1 at a power density of 799 W kg−1, indicating its great promise for constructing high-performance energy storage devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    27
    Citations
    NaN
    KQI
    []