Mechanical behavior of laminated functionally graded carbon nanotube reinforced composite plates resting on elastic foundations in thermal environments

2019 
The present study is concerned with static and free vibration analyses of laminated functionally graded carbon nanotube reinforced composite rectangular plates on elastic foundation based on nth-order shear deformation theory. Four types of carbon nanotubes distributions along the plate thickness are considered, which include uniformly distributed and three other functionally graded distributions. Governing differential equations are derived by means of Hamilton’s principle. The differential quadrature method is developed to formulate the problem, and rapid convergence is observed in this study. A numerical comparison with available results in the literature is carried out to show the validity of the proposed theory. Furthermore, effects of the carbon nanotubes volume fraction, thickness side ratio, aspect ratio, foundation parameters, different thermal environments, the number of layers, lamination angle, boundary condition, and carbon nanotubes distribution types on the static response of laminated func...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []