Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies

2017 
Complex micro- and nano-structures enable crucial developments in the healthcare remit (e.g., pharmaceutical and biomaterial sciences). In recent times, several technologies have been developed and explored to address key healthcare challenges (e.g., advanced chemotherapy, biomedical diagnostics and tissue regeneration). Electrohydrodynamic atomization (EHDA) technologies are rapidly emerging as promising candidates to address these issues. The fundamental principle driving EHDA engineering relates to the action of an electric force (field) on flowing conducting medium (formulation) giving rise to a stable Taylor cone. Through careful optimization of process parameters, material properties and selection, nozzle and needle design, and collection substrate method, complex active micro- and nano-structures are engineered. This short review focuses on key selected recent and established advances in the field of pharmaceutical and biomaterial applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    85
    Citations
    NaN
    KQI
    []