The adaptive transcriptional response of pathogenic Leptospira to peroxide reveals new defenses against infection-related oxidative stress

2020 
Pathogenic Leptospira spp. are the causative agents of the waterborne zoonotic disease leptospirosis. During infection, Leptospira are confronted with dramatic adverse environmental changes such as deadly reactive oxygen species (ROS). Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. In L. interrogans, genes encoding defenses against ROS are repressed by the peroxide stress regulator, PerR. In this study, RNA sequencing was performed to characterize both the L. interrogans adaptive response to low and high concentrations of hydrogen peroxide and the PerR regulon. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to detoxify oxidants produced during a peroxide stress. In addition, canonical molecular chaperones of the heat shock response and DNA repair proteins from the SOS response were required for Leptospira recovering from oxidative damages. Determining the PerR regulon allowed to identify the PerR-dependent mechanisms of the peroxide adaptive response and has revealed a PerR-independent regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, this adaptive response. In addition, we have identified other PerR-regulated genes encoding a TonB-dependent transport system, a lipoprotein (LipL48) and a two-component system (VicKR) involved in Leptospira tolerance to superoxide and that could represent the first defense mechanism against superoxide in L. interrogans, a bacterium lacking canonical superoxide dismutase. Our findings provide a comprehensive insight into the mechanisms required by pathogenic Leptospira to overcome infection-related oxidants. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms in this life-threatening pathogen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []