Transarterial Chemoembolization of Hepatocellular Carcinoma Using Radiopaque Drug-Eluting Embolics: How to Pursue Periprocedural Cross-Sectional Imaging?

2019 
Abstract Purpose To compare different imaging techniques (volume perfusion CT, cone-beam CT, and dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid–enhanced dynamic contrast–enhanced MR imaging with golden-angle radial sparse parallel MR imaging) in evaluation of transarterial chemoembolization of hepatocellular carcinoma (HCC) using radiopaque drug-eluting embolics (DEE). Materials and Methods MR imaging and CT phantom investigation of radiopaque DEE was performed. In the clinical portion of the study, 13 patients (22 HCCs) were prospectively enrolled. All patients underwent cross-sectional imaging before and after transarterial chemoembolization using 100–300 μm radiopaque DEE. Qualitative assessment of images using a Likert scale was performed. Results In the phantom study, CT-related beam-hardening artifacts were markedly visible at a concentration of 12% (v/v) radiopaque DEE; MR imaging demonstrated no significant detectable signal intensity changes. Imaging obtained before transarterial chemoembolization showed no significant difference regarding tumor depiction. Visualization of tumor feeding arteries was significantly improved with volume perfusion CT ( P P  = .002) compared with MR imaging. Radiopaque DEE led to significant decrease in tumor depiction ( P  = .001) and significant increase of beam-hardening artifacts ( P  = .012) using volume perfusion CT before versus after transarterial chemoembolization. Greater residual arterial tumor enhancement was detected with MR imaging (10 HCCs) compared with volume perfusion CT (8 HCCs) and cone-beam CT (6 HCCs). Conclusions Using radiopaque DEE, the imaging modalities provided comparable early treatment assessment. In HCCs with dense accumulation of radiopaque DEE, treatment assessment using volume perfusion CT or cone-beam CT may be impaired owing to resulting beam-hardening artifacts and contrast stasis. Dynamic contrast–enhanced MR imaging may add value in detection of residual arterial tumor enhancement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []