Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix

2021 
Abstract Carbon nanotubes with multiple walls (MWCNTs) were modified via green synthesis methodology, with metal nanoparticles (MPNs-Fe). The prepared material (MWCNT/MPNs-Fe) was characterized and used to remove the herbicide glyphosate (GLY) from an aqueous matrix through the adsorption process. The characterization results indicated the presence of MPNs-Fe incorporated between the tangled wires of the MWCNTs, thus confirming the green synthesis success. The kinetic studies showed a percentage of GLY removal of up to 86.23% (for C0 = 35 mg L−1), with the process equilibrium being reached in 120 min. The pseudo-first-order model demonstrated a greater prediction capacity for the system. The Sips isotherm model was best suited to the equilibrium data, providing a maximum adsorption capacity of 43.66 mg g−1 (298 K). The thermodynamic behavior showed that the process is spontaneous and favorable, with exothermic nature. The material's application in close to real circumstances presented the removals of 68.38% and 40.33% for two simulated effluents with different compositions. The adsorption regeneration tests found that the adsorption kept similar adsorption capacities after six cycles. Therefore, it can be concluded that the MWCNT/MPNs-Fe synthesized in the present work is a promising alternative as an adsorbent in the treatment of effluents and waters containing GLY.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    5
    Citations
    NaN
    KQI
    []