Inhibitor and peptide binding to calmodulin characterized by high pressure Fourier transform infrared spectroscopy and Förster resonance energy transfer

2018 
Abstract We compare the binding of an inhibitor with that of a natural peptide to Ca 2+ saturated calmodulin (holo-CaM). As inhibitor we have chosen trifluoperazine (TFP) that is inducing a huge conformational change of holo-CaM from the open dumbbell-shaped to the closed globular conformation upon binding. On the other hand, melittin is used as model peptide, which is a well-known natural binding partner of holo-CaM. The experiments are carried out as a function of pressure to reveal the contribution of volume or packing effects to the stability of the calmodulin-ligand complexes. From high-pressure Fourier transform infrared (FTIR) spectroscopy, we find that the holo-CaM/TFP complex has a much higher pressure stability than the holo-CaM/melittin complex. Although the analysis of the secondary structure of holo-CaM (without and with ligand) indicates no major changes up to several kbar, pressure-induced exposure of α-helices to water is most pronounced for holo-CaM without ligand, followed by holo-CaM/melittin and then holo-CaM/TFP. Moreover, structural pressure resistance of the holo-CaM/TFP complex in comparison with the holo-CaM/melittin complex is also clearly visible by higher Ca 2+ affinity. Forster resonance energy transfer (FRET) from the Tyr residues of holo-CaM to the Trp residue of melittin even suggests some partial dissociation of the complex under pressure which points to void volumes at the protein-ligand interface and to electrostatic binding. Thus, all results of this study show that the inhibitor TFP binds to holo-CaM with higher packing density than the peptide melittin enabling a favorable volume contribution to the inhibitor efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    5
    Citations
    NaN
    KQI
    []