Study on the Rheological Behavior of a Model Clay Sediment

2021 
Clay sediments are the main component of seabed sediment. Interactions between the nano-sized, disk-shaped and charged clay particles are complicated, as they control the sediment’s rheology. In this study, we studied the rheological behavior of the clay sediment modeled by laponite and bentonite suspensions experimentally using a rotational rheometer. The yield stress decreased when water content increased. Meanwhile, the yield stress of the laponite suspension first increased and then decreased with increasing salinity. It is considered that the face-to-face repulsive electrostatic interaction between clay platelets dominated the yield behavior. A yield stress model was developed to describe the change of the yield stress with both the water content and the salinity. When the system started to flow, the viscosity decreased with increasing shear. A master curve of viscosity is was from the viscosity-stress curves at different water contents if the applied shear stress was normalized by the yield stress and the viscosity normalized by a characteristic viscosity. This study provides a preliminary understanding of the clay sediment rheology and its mechanism for the investigation on the flowing of the sediment systems with strong interparticle interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []