Value of layer-specific speckle tracking echocardiography for early detection of myocardial injury caused by chemotherapy in breast cancer patients with cardiovascular risk

2021 
The probability of toxicity-related myocardial injury event with anthracyclines is controversial, which could be related to the underlying cardiac status before chemotherapy. Our study sought to investigate the influence of cardiovascular risk factors on myocardial motion and cardiac function using layer-specific speckle tracking echocardiography (STE) during chemotherapy with epirubicin. Female patients with first-diagnosed breast cancer were prospectively enrolled in our study and received 4 chemotherapeutic cycles with epirubicin in each cycle of 21 days. All patients underwent echocardiography for layer-specific STE analysis before and after all chemotherapy. Clinical data including cardiovascular risk factors were collected. According to the Framingham score, patients with cardiovascular risk factors were divided into groups with low, medium, and high risk. 134 patients existed in the final analysis. The accumulated dose of epirubicin for were 560.0 ± 103.8 mg. 97 (72.4%) patients had cardiovascular risk factors. According to the Framingham score, 57 (42.5%) patients categorized in high risk. Endocardial layer strain after chemotherapy were lower than those at baseline (p < 0.05, all), especially for patients with high risk. The changes of endocardial longitudinal strain during chemotherapy were associated with cardiovascular risks at baseline with correlation coefficient of 0.627. Our study found that layer-specific STE is valuable for early detection of toxicity-related myocardial injury for patients with breast cancer after epirubicin chemotherapy and cardiovascular risk factors have greatly influenced on cardiac function during chemotherapy. The endocardial layer strain is sensitive to evaluate early-stage toxicity-related myocardial injury after epirubicin chemotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []