Fast Deterministic Fully Dynamic Distance Approximation.

2021 
In this paper, we develop deterministic fully dynamic algorithms for computing approximate distances in a graph with worst-case update time guarantees. In particular we obtain improved dynamic algorithms that, given an unweighted and undirected graph $G=(V,E)$ undergoing edge insertions and deletions, and a parameter $0 < \epsilon \leq 1$, maintain $(1+\epsilon)$-approximations of the $st$ distance of a single pair of nodes, the distances from a single source to all nodes ("SSSP"), the distances from multiple sources to all nodes ("MSSP''), or the distances between all nodes ("APSP"). Our main result is a deterministic algorithm for maintaining $(1+\epsilon)$-approximate single-source distances with worst-case update time $O(n^{1.529})$ (for the current best known bound on the matrix multiplication coefficient $\omega$). This matches a conditional lower bound by [BNS, FOCS 2019]. We further show that we can go beyond this SSSP bound for the problem of maintaining approximate $st$ distances by providing a deterministic algorithm with worst-case update time $O(n^{1.447})$. This even improves upon the fastest known randomized algorithm for this problem. At the core, our approach is to combine algebraic distance maintenance data structures with near-additive emulator constructions. This also leads to novel dynamic algorithms for maintaining $(1+\epsilon, \beta)$-emulators that improve upon the state of the art, which might be of independent interest. Our techniques also lead to improvements for randomized approximate diameter maintenance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []