High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic-electric micro-vortices platform

2021 
Intracellular delivery of cargos for cell engineering plays a pivotal role in transforming medicine and biomedical discoveries. Recent advances in microfluidics and nanotechnology have opened up new avenues for efficient, safe, and controllable intracellular delivery, as they improve precision down to the single-cell level. Based on this capability, several promising micro- and nanotechnology approaches outperform viral and conventional non-viral techniques in offering dosage-controlled delivery and/or intracellular delivery of large cargos. However, to achieve this level of precision and effectiveness, they are either low in throughput, limited to specific cell types (e.g., adherent vs. suspension cells), or complicated to operate with. To address these challenges, here we introduce a versatile and simple-to-use intracellular delivery microfluidic platform, termed Acoustic-Electric Shear Orbiting Poration (AESOP). Hundreds of acoustic microstreaming vortices form the production line of the AESOP platform, wherein hundreds of thousands of cells are trapped, permeabilized, and mixed with exogenous cargos. Using AESOP, we show intracellular delivery of a wide range of molecules (from 6kbp) with viabilities over 80% and comparable delivery efficiencies, but also is an order of magnitude higher in throughput, compatible with both adherent and suspension cell lines, and simple to operate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []