Transparent polycrystalline nanoceramics consisting of triclinic Al2SiO5 kyanite and Al2O3 corundum

2018 
Transparent polycrystalline nanoceramics consisting of triclinic Al2SiO5 kyanite (91.4 vol%) and Al2O3 corundum (8.6 vol%) were fabricated at 10 GPa and 1200-1400°C. These materials were obtained by direct conversion from Al2O3-SiO2 glasses fabricated using the aerodynamic levitation technique. The material obtained at 10 GPa and 1200°C shows the highest optical transparency with a real in-line transmission value of 78% at a wavelength of 645 nm and a sample-thickness of 0.8 mm. This sample shows equigranular texture with an average grain size of 34 ± 13 nm. The optical transparency increases with decreasing mean grain size of the constituent phases. The relationship between real in-line transmission and grain size is well explained by a grain-boundary scattering model based on a classical theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    5
    Citations
    NaN
    KQI
    []