Wrinkled bilayer graphene with wafer scale mechanical strain

2016 
Wafer-scale strained bilayer graphene is demonstrated by employing a silicon nitride (Si3N4) stressor layer. Different magnitudes of compressive stress up to 840 MPa were engineered by adjusting the Si3N4 deposition recipes, and different strain conditions were analyzed using Raman spectroscopy. The strained graphene displayed significant G peak shifts and G peak splitting with 16.2 cm−1 and 23.0 cm−1 of the G band and two-dimensional band shift, which corresponds to 0.26% of strain. Raman mapping of large regions of the graphene films found that the largest shifts/splitting occurred near the bilayer regions of the graphene films. The significance of our approach lies in the fact that it can be performed in a conventional microfabrication process, i.e., the plasma enhanced chemical vapor deposition system, and thus easily implemented for large scale production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []