Maps determined by rank-\varvec{s} matrices for relatively small \varvec{s}

2017 
Let n and s be integers such that \(1\le s<\frac{n}{2}\), and let \(M_n(\mathbb {K})\) be the ring of all \(n\times n\) matrices over a field \(\mathbb {K}\). Denote by \([\frac{n}{s}]\) the least integer m with \(m\ge \frac{n}{s}\). In this short note, it is proved that if \(g:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\) is a map such that \(g\left( \sum _{i=1}^{[\frac{n}{s}]}A_i\right) =\sum _{i=1}^{[\frac{n}{s}]}g(A_i)\) holds for any \([\frac{n}{s}]\) rank-s matrices \(A_1,\ldots ,A_{[\frac{n}{s}]}\in M_n(\mathbb {K})\), then \(g(x)=f(x)+g(0)\), \(x\in M_n(\mathbb {K})\), for some additive map \(f:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\). Particularly, g is additive if \(char\mathbb {K}\not \mid \left( [\frac{n}{s}]-1\right) \).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []