Ultrasound Sample Entropy Imaging: A New Approach for Evaluating Hepatic Steatosis and Fibrosis.

2021 
Objective: Hepatic steatosis causes nonalcoholic fatty liver disease and may progress to fibrosis. Ultrasound is the first-line approach to examining hepatic steatosis. Fatty droplets in the liver parenchyma alter ultrasound radiofrequency (RF) signal statistical properties. This study proposes using sample entropy, a measure of irregularity in time-series data determined by the dimension [Formula: see text] and tolerance [Formula: see text], for ultrasound parametric imaging of hepatic steatosis and fibrosis. Methods: Liver donors and patients were enrolled, and their hepatic fat fraction (HFF) ([Formula: see text]), steatosis grade ([Formula: see text]), and fibrosis score ([Formula: see text]) were measured to verify the results of sample entropy imaging using sliding-window processing of ultrasound RF data. Results: The sample entropy calculated using [Formula: see text] 4 and [Formula: see text] was highly correlated with the HFF when a small window with a side length of one pulse was used. The areas under the receiver operating characteristic curve for detecting hepatic steatosis that was [Formula: see text]mild, [Formula: see text]moderate, and [Formula: see text]severe were 0.86, 0.90, and 0.88, respectively, and the area was 0.87 for detecting liver fibrosis in individuals with significant steatosis. Discussion/Conclusions: Ultrasound sample entropy imaging enables the identification of time-series patterns in RF signals received from the liver. The algorithmic scheme proposed in this study is compatible with general ultrasound pulse-echo systems, allowing clinical fibrosis risk evaluations of individuals with developing hepatic steatosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []