Multi-phase outflows in Mkn 848 observed with SDSS-MaNGA integral field spectroscopy

2019 
The characterisation of galaxy-scale outflows in terms of their multi-phase nature, amount, and effects of flowing material is crucial to place constraints on models of galaxy evolution. This study can proceed only with the detailed investigation of individual targets. We present a spatially resolved spectroscopic optical data analysis of Mkn 848, a complex system consisting of two merging galaxies at z~0.04 that are separated 7.5 kpc (projected distance). Motivated by the presence of a multi-phase outflow in the north-west system revealed by the SDSS integrated spectrum, we analysed the publicly available MaNGA data, which cover almost the entire merging system, to study the physical properties of cool and warm gas in detail. Galaxy-wide outflowing gas in multiple phases is revealed for the first time in the two merging galaxies. We also detect spatially resolved resonant NaID emission associated with the outflows. The derived outflow energetics may be consistent with a scenario in which both winds are accelerated by stellar processes and AGN activity, although we favour an AGN origin given the high outflow velocities and the ionisation conditions observed in the outflow regions. Deeper observations are required, however, to better constrain the nature of these multi-phase outflows. Outflow energetics in the north-west system are strongly different between the ionised and atomic gas components, the latter of which is associated with mass outflow rate and kinetic and momentum powers that are 1-2 dex higher; those associated with the south-east galaxy are instead similar. Strong kp-scale outflows are revealed in an ongoing merger system, suggesting that feedback can potentially impact the host galaxy even in the early merger phases. The characterisation of the neutral and ionised gas phases has proved to be crucial for a comprehensive study of the outflow phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    189
    References
    3
    Citations
    NaN
    KQI
    []