An Analysis of Extinction Coefficients of Particles and Water Moisture in the Stack after Flue Gas Desulfurization at a Coal-Fired Power Plant

2011 
ABSTRACT Two important factors that affect in-stack opacity—light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit—are investigated. The mass light extinction coefficients for particles and water moisture, k p and k w, respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated k p and k w values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although k w is 3 orders of magnitude smaller than k p, experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    10
    Citations
    NaN
    KQI
    []