Subtle and unexpected role of PEG in tuning the penetration mechanisms of PLA-based nano-formulations into intact and impaired skin

2019 
Abstract We present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA- b -PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure. Skin absorption studies showed that polymer composition influenced drug penetration depending on skin condition (intact or impaired). In intact skin, highly PEGylated NPs achieved the best skin absorption, even if the penetration differences between the NPs were low. In impaired skin, on the contrary, non-PEGylated NPs (PLA NPs) promoted a strong drug deposition. Further investigations revealed that the strong drug accumulation from PLA NPs in impaired skin was mediated by aggregation and sedimentation of NPs due to the release of charged species from the skin. In contrast, the dynamic structure of highly PEGylated NPs promoted wetting of the surface and interactions with skin lipids, improving drug absorption in intact skin. Since NPs structure and surface properties determine the drug penetration mechanisms at the NP-skin interface, this work highlights the importance of properly tuning NPs composition according to skin physiopathology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    6
    Citations
    NaN
    KQI
    []