PROPENSITY FOR ACETABULAR COMPONENT RIM LOADING WITH SURGICAL AND LOADING VARIABILITY IN THA

2017 
INTRODUCTION Within total hip replacement, articulation of the femoral head near the rim of the acetabular liner creates undesirable conditions leading to a propensity for dislocation[1], increased contact stresses[2], increased load and torque imparted on the acetabular component[3], and increased wear[4]. Propensity for rim loading is affected by prosthesis placement, as well as the kinematics and loading of the patient. The present study investigates these effects. METHODS CT scans from an average-sized patientwere segmented for the hemipelvis and femur of interest. DePuy Synthes implant models were aligned in a neutral position in Hypermesh. The acetabular liner was assigned deformable solid material properties, and the remainder of the model was assigned rigid properties. Joint reaction forces and kinematics of hip flexion were taken from the public Orthoload database to represent ADLs [5]: Active flexion lying on a table, gait, bending to lift and move a load, and sit-stand. The pelvis was fully constrained, while three-degree-of-freedom (3-DOF) forces were applied to the femur. Hip flexion was kinematically-prescribed while internal-external (I-E) and adduction-abduction (Ad-Ab) DOFs were constrained. Angles of acetabular implant positioning were based on published data by Rathod [6]. Femoral implant position was chosen based on cadaveric in vitro DePuy Synthes measurements of variation in femoral prosthesis position reported previously [7]. Acetabular and Femoral alignment angles were represented for nominal position, as well as positioning + 1σ and + 2σ from the mean in both anteversion and inclination for acetabular components, and both Varus/Valgus and Flexion (angle in sagittal plane) for the femoral component. The analyses were automated within Matlab to execute 68 finite element analyses in Abaqus Explicit and structured in a DOE style analysis with Cup inclination, Cup version, Stem Flexion, and Stem Varus/Valgus, and Activity as variables of interest (64 runs + 4 centerpoints = 68 analyses). From a previous study it was known that acetabular component inclination had the greatest effect on contact pressure location [7], so all data were analyzed relative to inclination, allowing other positioning variables to be represented as variation per inclination position. Results are presented as a percentage, with 0% being pole loading and 100% being rim loading, to normalize for head diameter. RESULTS As expected, higher cup inclination generally resulted in higher propensity for rim loading. The degree to which this is true, however, is very dependent upon activity. The bent forward, liftweight activity, for example, resulted in relatively less change in center of pressure distance from the apex of the liner (COPtA) with increased inclination. Still other activities, such as Flexion, showed to be more affected by variation in Cup version, Stem Flexion, and Stem Varus/Valgus for a given inclination angle, as shown by larger variation in results. CONCLUSION This study generally supports acetabular prosthesis inclination angle as an important variable for the study of rim loading in THA. However, it also highlights the importance of including variation in implant placement, as well as loading conditions in such evaluations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []