Possible Carcinogenic Effect of 6-Mercaptopurine on Bone Marrow Stem Cells Relation to Thiopurine Metabolism

1999 
BACKGROUND 6-Mercaptopurine (6MP) has been regarded as nonleukemogenic, even though the cytotoxicity of 6MP depends on the incorporation of 6-thioguanine nucleotides (6TGN) into DNA. In hematopoietic cells this pathway competes with S-methylation catalyzed by thiopurine methyltransferase (TPMT). However, methylated 6MP metabolites inhibit purine de novo synthesis and thus may enhance incorporation of 6TGN into DNA. Approximately 10% of white individuals have low TPMT activity as a result of polymorphisms in the TPMT gene. The authors attempted to test the hypothesis that the degree of DNA damage during 6MP therapy might reflect variations in 6MP metabolism and pharmacokinetics. METHODS The authors measured TPMT activity as well as erythrocyte levels of 6TGN (E-6TGN) and methylated 6MP metabolites (E-MeMP) during 6MP therapy in 439 children with acute lymphoblastic leukemia, 5 of whom later developed secondary myelodysplasia or acute myeloid leukemia (sMDS/AML). RESULTS The patients who developed sMDS/AML had significantly lower TPMT activity compared with the remaining patients (P = 0.03). The 55 patients with TPMT activity the 90% percentiles or had TPMT activity < 14 U/mL RBC. CONCLUSIONS These data demonstrate an increased leukemogenic risk when 6MP is administered with other cytotoxic agents in patients with low TPMT activity, and indicate that not only high 6TGN levels but also high levels of methylated metabolites may lead to DNA damage. Cancer 1999;86:1080–6. © 1999 American Cancer Society.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    144
    Citations
    NaN
    KQI
    []