Association of LAG3 genetic variation with an increased risk of PD in Chinese female population

2019 
Emerging evidence suggests that α-synuclein (α-syn) aggregation and intercellular transmission contributes to pathogenesis of Parkinson’s disease (PD) and the toxic fibrillary α-syn binds lymphocyte-activation gene 3 (LAG3) receptor that mediates α-syn transmission. The deletion of LAG3 in animal models was shown to limit α-syn spreading and alleviate the pathological changes of dopaminergic neurons and animal behavioral deficits induced by α-syn aggregation. However, little is known about the genetic association of LAG3 variation with human PD development. Here we investigated LAG3 single nucleotide polymorphisms (SNPs) and examined the levels of soluble LAG3 (sLAG3) of CSF and serum from Chinese PD patients. We enrolled 646 PD patients and 536 healthy controls to conduct a case-control study. All the participants were genotyped using Sequenom iPLEX Assay and the partial cerebrospinal fluid (CSF) and serum samples were assessed by Meso Scale Discovery electrochemiluminescence (MSD-ECL) immunoassay to measure sLAG3 concentration. As a result, distributions of rs1922452-AA (1.975, 95% confidence interval (CI) 1.311–2.888, p = 0.001) and rs951818-CC (OR = 2.03, 95% CI 1.369–3.010, p = 0.001) genotype frequencies were found higher in the female PD patients than controls, respectively, and a strong linkage disequilibrium (LD) was calculated on the variants. The level of sLAG3 in CSF of PD patients was found to significantly differ from that of controls (51.56 ± 15.05 pg/ml vs 88.49 ± 62.96 pg/ml, p < 0.0001). Meanwhile, the concentration of α-synuclein in CSF of patients was significantly lower than that of controls (939.9 ± 2900 pg/ml vs 2476 ± 4403 pg/ml, p < 0.0001) and the level of sLAG3 was detected to be positive correlation with that of α-synuclein in the control group (r = 0.597, p = 0.0042), but not in PD group (r = 0.111, p = 0.408). In summary, our data suggested that LAG3 SNPs increase the PD risk of Chinese female population and the sLAG3 may be a potential biomarker predicted for PD development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    11
    Citations
    NaN
    KQI
    []