Autonomic and peripheral nervous system function in acute tick‐borne encephalitis

2016 
Objectives Tick-borne encephalitis (TBE) is an emerging flaviviral zoonosis in Central and Eastern Europe. TBE can present as meningitis, meningoencephalitis, or meningoencephalomyelitis. Dysfunction of the autonomic (ANS) and peripheral motoric and sensory nervous system (PNS) might contribute to acute and long-term complications. We aimed to examine, whether the ANS and PNS are affected in acute TBE. Methods Fourteen patients with acute TBE, 17 with diabetic polyneuropathy (d-PNP), and 30 healthy controls (HC) were examined in our single-center, prospective study. ANS and PNS function was assessed by time- and frequency-domain parameters of the heart rate (HR) variability at rest and deep respiration, and by sural and tibial nerve neurography. Primary endpoint was the HR variability at rest measured by root mean square of the successive differences (RMSSD). Autonomic symptoms and quality of life (QoL) were assessed by questionnaires. Results Tick-borne encephalitis patients had a lower RMSSD at rest (TBE 13.1 ± 7.0, HC 72.7 ± 48.3; P < 0.001) and deep respiration (TBE 42.8 ± 27.0, HC 109.7 ± 68.8; P < 0.01), an increased low-frequency to high-frequency power component ratio at rest (TBE 4.0 ± 4.0, HC 0.8 ± 0.5; P < 0.001), and a higher minimal heart rate at rest (TBE 85.4 ± 7.0, HC 69.5 ± 8.5; P < 0.001), all similar to patients with d-PNP, indicating sympathovagal imbalance with increased sympathetic activation. Compared to HC, sural and tibial nerve conduction velocities and action potential amplitudes were reduced, ANS symptoms were more frequent, and QoL was lower in patients with TBE. Conclusions The ANS and to a lesser degree the PNS are affected by acute TBE, which could potentially contribute to short- and long-term morbidity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []