Childhood CCL18, CXCL10 and CXCL11 levels differentially relate to and predict allergy development

2021 
BACKGROUND Chemokines are important mediators in immune cell recruitment, contributing to allergy development. However, extensive studies of chemokines in the circulation in relation to the presence and development of allergic diseases remain scarce. Our aim was to investigate associations of circulating allergy-related chemokines with the development of asthma and sensitization cross-sectionally and longitudinally in a population-based cohort. METHODS The chemokines CCL17, CCL22, CXCL10, CXCL11 and CCL18 were measured in plasma samples from children in the Manchester Asthma and Allergy Study. Samples were available from cord blood at birth (n = 376), age 1 (n = 195) and age 8 (n = 334). Cross-sectional and longitudinal association analyses were performed in relation to asthma and allergic sensitization, as well as allergic phenotype clusters previously derived using machine learning in the same study population. RESULTS In children with asthma and/or allergic sensitization, CCL18 levels were consistently elevated at 1 and/or 8 years of ages. In a longitudinal model including information on asthma from 4 time points (5, 8, 11 and 16 years of ages), we observed a significant association between increasing CCL18 levels at age 1 and a higher risk of asthma from early school age to adolescence (OR = 2.9, 95% CI 1.1-7.6, p = .028). We observed similar associations in longitudinal models for allergic sensitization. Asthma later in life was preceded by increased CXCL10 levels after birth and decreased CXCL11 levels at birth. CONCLUSION Elevated CCL18 levels throughout childhood precede the development of asthma and allergic sensitization. The Th1-associated chemokines CXCL10 and CXCL11 also associated with the development of both outcomes, with differential temporal effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []