Balancing Data on Deep Learning-Based Proteochemometric Activity Classification.

2021 
In silico analysis of biological activity data has become an essential technique in pharmaceutical development. Specifically, the so-called proteochemometric models aim to share information between targets in machine learning ligand-target activity prediction models. However, bioactivity data sets used in proteochemometric modeling are usually imbalanced, which could potentially affect the performance of the models. In this work, we explored the effect of different balancing strategies in deep learning proteochemometric target-compound activity classification models while controlling for the compound series bias through clustering. These strategies were (1) no_resampling, (2) resampling_after_clustering, (3) resampling_before_clustering, and (4) semi_resampling. These schemas were evaluated in kinases, GPCRs, nuclear receptors, and proteases from BindingDB. We observed that the predicted proportion of positives was driven by the actual data balance in the test set. Additionally, it was confirmed that data balance had an impact on the performance estimates of the proteochemometric model. We recommend a combination of data augmentation and clustering in the training set (semi_resampling) to mitigate the data imbalance effect in a realistic scenario. The code of this analysis is publicly available at https://github.com/b2slab/imbalance_pcm_benchmark.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []