Multi-material design in additive manufacturing—feasibility validation

2020 
The present investigations on generative manufacturing using metallic materials pursue the idea of transferring the microscopic structural morphology of a dual-phase steel in modified form to the macroscopic level. The aim is to be able to join materials of different lattice modifications and to combine their positive properties. This applies in particular to the combination of high tensile strength and good formability. For this investigation, a specimen was created from a high-strength ferritic/martensitic (25%) and an austenitic (75%) material with a defined welding sequence. The specimen was deliberately manufactured anisotropically using welding layers in order to quantify its properties. Tensile tests were performed on specimens with different weld seam orientations to determine the direction-dependent properties. As can be proven by the results, the application of welding processes with different materials results in an anisotropic behaviour in generative manufacturing. With regard to tensile strength and elongation, there is an integral value of the mechanical-technological properties of both base materials. The existing anisotropy can be utilized with regard to the design by adapting the alignment of the weld layers to the load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []