Evidence for a long-r ange RNA-RNA interaction between ORF8 and the downstream region of the Spike polybasic insertion of SARS-CoV-2

2021 
SARS-CoV-2 has affected people all over the world as the causative agent of COVID-19. The virus is related to the highly lethal SARS-CoV responsible for the 2002-2003 SARS outbreak in Asia. Intense research is ongoing to understand why both viruses have different spreading capacities and mortality rates. Similar to other betacoronaviruses, long-range RNA-RNA interactions occur between different parts of the viral genomic RNA, resulting in discontinuous transcription and production of various sub-genomic RNAs. These sub-genomic RNAs are then translated into different viral proteins. An important difference between both viruses is a polybasic insertion in the Spike region of SARS-CoV-2, absent in SARS-CoV. Here we show that a 26-base-pair long-range RNA-RNA interaction occurs between the genomic region downstream of the Spike insertion and ORF8 in SARS-CoV-2. Predictions suggest that the corresponding ORF8 region forms the most energetically favorable interaction with that of Spike region from amongst all possible candidate regions within SARS-CoV-2 genomic RNA. We also found signs of sequence covariation in the predicted interaction using a large dataset with 27,592 full-length SARS-CoV-2 genomes. In particular, a synonymous mutation in ORF8 accommodated for base pairing with Spike [G23675 C28045U], and a non-synonymous mutation in Spike accommodated for base pairing with ORF8 [C23679U G28042] both of which were in close proximity of one another. The predicted interactions can potentially be related to regulation of sub-genomic RNA production rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []