Blood Levels of Free-Circulating Mitochondrial DNA in Septic Shock and Postsurgical Systemic Inflammation and Its Influence on Coagulation: A Secondary Analysis of a Prospective Observational Study.

2020 
Major surgery is regularly associated with clinical signs of systemic inflammation, which potentially affects the rapid identification of sepsis. Therefore, this secondary analysis of an observational study aims to determine whether NADH dehydrogenase 1 (ND1) mitochondrial DNA (mtDNA) could be used as a potential biomarker for the discrimination between septic shock and postsurgical systemic inflammation. Overall, 80 patients were included (septic shock (n = 20), cardiac artery bypass grafting (CABG, n = 20), major abdominal surgery (MAS, n = 20), and matched controls (CTRL, n = 20)). Quantitative PCR was performed to measure ND1 mtDNA. Thromboelastography was used to analyze the coagulatory system. Free-circulating ND1 mtDNA levels were significantly higher in septic shock patients compared to patients suffering from post-surgical inflammation ({copies/µL}: CTRL: 1208 (668-2685); septic shock: 3823 (2170-7318); CABG: 1272 (417-2720); and MAS: 1356 (694-2845); CTRL vs. septic shock: p < 0.001; septic shock vs. CABG: p < 0.001; septic shock vs. MAS: p = 0.006; CABG vs. MAS: p = 0.01). ND1 mtDNA levels in CABG patients showed a strong positive correlation with fibrinogen (correlation coefficient [r]= 0.57, p < 0.001) and fibrinogen-dependent thromboelastographic assays (maximum clot firmness, EXTEM: r = 0.35, p = 0.01; INTEM: r = 0.31, p = 0.02; FIBTEM: r = 0.46, p < 0.001). In conclusion, plasma levels of free-circulating ND1 mtDNA were increased in septic shock patients and were discriminative between sepsis and surgery-induced inflammation. Furthermore, this study showed an association between ND1 mtDNA and a fibrinogen-dependent pro-coagulatory shift in cardiac surgical patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []