Thermoeconomic analysis of CO2 Ejector-Expansion Refrigeration Cycle (EERC) for low-temperature refrigeration in warm climates

2021 
Abstract Refrigeration industry is adopting a proactive strategy to phase out fluorinated greenhouse gases by more sustainable working fluids. R744 is a natural refrigerant widely proposed for commercial refrigeration. Its use in cascade and booster cycles allows a combined cooling and freezing production. However, when single-stage evaporation at low temperature is required, the adoption of R744 in transcritical cycles is scarce. The main reasons are due to the low Coefficient of Performance (COP) achieved, as well as the technical limitations to reach extreme pressure ratios using commercial compressors. In light of this, this paper proposes to use the CO2 Ejector-Expansion Refrigeration Cycle (EERC) to overcome these drawbacks. To assess the feasibility of the proposal, a thermoeconomic optimization is conducted for low-temperature refrigeration in warm climates. The analysis has been conducted considering a two-phase flow ejector, a commercial double-stage compressor, and evaporating conditions ranging from -10 °C to -38.11 °C, which was revealed the minimum temperature to avoid the triple point inside the ejector. The results showed that the EERC allows using smaller commercial compressors within a broader operating envelope, improving the annual average COP about 5.5% compared to the reference cycle, besides reducing investment and yearly energy consumption costs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    4
    Citations
    NaN
    KQI
    []