Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae.

1996 
Salmonella enteritidis produces thin, aggregative fimbriae, named SEF17, which are composed of polymerized AgfA fimbrin proteins. DNA sequence analysis of a 2-kb region of S. enteritidis DNA revealed three contiguous genes, agfBAC. The 453-bp agfA gene encodes the AgfA fimbrin, which was predicted to be 74% identical and 86% similar in primary sequence to the Escherichia coli curli structural protein, CsgA. pHAG, a pUC18 derivative containing a 3.0-kb HindIII fragment encoding agfBAC, directed the in vitro expression of the major AgfA fimbrin, with an M(r) of 17,000, and a minor AgfB protein, with an M(r) of 16,000, encoded by the 453-bp agfB gene. AgfA was not expressed from pDAG, a pUC18 derivative containing a 3.1-kb DraI DNA fragment encoding agfA but not agfB. Primer extension analysis identified two adjacent transcription start sites located immediately upstream of agfB in positions analogous to those of the E. coli curlin csgBA operon. No transcription start sites were located immediately upstream of agfA or agfC. Northern (RNA) blot analysis confirmed that transcription of agfA was initiated from the agfB promoter region. Secondary-structure analysis of the putative mRNA transcript for agfBAC predicted the formation of a stem-loop structure (delta Gzero, -22 kcal/mol [-91 kJ/mol]) in the intercistronic region between agfA and agfC, which may be involved in stabilization of the agfBA portion of the agfBAC transcript. agfBAC and flanking regions had a high degree of sequence similarity with those counterparts of the E. coli curlin csgBA region for which sequence data are available. These data are demonstrative of the high degree of similarity between S. enteritidis SEF17 fimbriae and E. coli curli with respect to fimbrin amino acid sequence and genetic organization and, therefore, are indicative of a common and relatively recent ancestry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    139
    Citations
    NaN
    KQI
    []