Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.

2020 
Artificial synapses (ASs) are electronic devices emulating important functions of biological synapses, which are essential building blocks of artificial neuromorphic networks for brain-inspired computing. A human brain consists of several quadrillion synapses for information storage and processing, and massively parallel computation. Neuromorphic systems require ASs to mimic biological synaptic functions, such as paired-pulse facilitation, short-term potentiation, long-term potentiation, spatiotemporally-correlated signal processing, and spike-timing-dependent plasticity, etc. Feature size and energy consumption of ASs need to be minimized for high-density energy-efficient integration. This work reviews recent progress on ASs. First, synaptic plasticity and functional emulation are introduced, and then synaptic electronic devices for neuromorphic computing systems are discussed. Recent advances in flexible artificial synapses for artificial sensory nerves are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    128
    References
    11
    Citations
    NaN
    KQI
    []