A Novel Peptide-Equipped Exosomes Platform for Delivery of Antisense Oligonucleotides

2021 
Exosomes are natural delivery vehicles because of their original feature such as low immunogenicity, excellent biocompatibility, and migration capability. Engineering exosomes with appropriate ligands are effective approaches to improve the low cellular uptake efficiency of exosomes. However, current strategies face considerable challenges due to the tedious and labor-intensive operational process. Here, we designed a novel peptides-equipped exosomes platform which can be assembled under convenient and mild reaction condition. Cell-penetrating peptides (CPPs) was conjugated on HepG2 cells-derived exosomes surface which can not only enhance the penetrating capacity of exosomes but also assist exosomes in loading antisense oligonucleotides (ASOs). The cellular uptake mechanism was investigated and we compared the difference between natural exosomes and modified exosomes. The resulting nanosystem demonstrated a preferential tropism for cells that are parented to their source tumor cells and could remarkably increase the cellular delivery of G3139 with efficient downregulation of antiapoptotic Bcl-2. This work developed a rapid strategy for intracellular delivery of nucleic acids, thus providing more possibilities toward personalized cancer medicine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []