High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization.

2021 
Abstract Fiber electrodes are the main functional elements of flexible and textile-based storage devices. This study proposes a Polypyrrole (PPy) and MXene composite, grown on cotton fiber, as a high capacitance electrode. Pyrrole (Py) and MXene are processed and deposited along with an in-situ polymerization. The mass and areal capacitance of the assembled (PPy/MXene)@Cotton electrode respectively reach to 506.6 F g−1, at current density of 1 A g−1 and 455.9 mF cm−2 at scan rate of 0.9 mA cm−2. These values outperform the PPy@Cotton fiber electrode, around 45.8% and 119% respectively. As-prepared fiber electrodes with mechanical strength of 107.3 MPa and conductivity of 60.8 S/m, offer intriguing application prospects in the field of weaving and flexible fibrous supercapacitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []