Two-Dimensional Modeling of Pressure Swing Adsorption (PSA) Oxygen Generation with Radial-Flow Adsorber

2019 
Radial flow is an important type of flow direction for large-scale pressure swing adsorption (PSA) oxygen generation systems. In this study, a numerical simulation of a PSA oxygen generation process based on radial-flow adsorbers was performed with two-dimensional CFD modeling. The gas distribution, the maldistribution factor and the pressure difference were comparatively investigated at each flow type of the radial-flow adsorber. Considering the gas adsorption performance, the results indicated that the centripetal π-flow radial adsorber has the best flow characteristics for the PSA process. The oxygen purity distribution within the adsorption bed was studied to compare centripetal and centrifugal π-flows, and the former was shown to perform better on oxygen enrichment and adsorbent desorption. The steady state was achieved after eight cycles for the centripetal-π adsorber and each of the four steps of the PSA process was explored in detail to show the advantageous properties for oxygen generation in terms of adsorption and desorption. The relationships between the product flow rate and the oxygen purity and recovery were further investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []