Structural, Magnetic, Optical, and MEM Studies on Co-precipitated X 0 . 4 Zn 0 . 6 Fe 2 O 4 (X = Co, Mn) Nanoferrite Particles

2017 
Cobalt and manganese-substituted zinc ferrite X0.4Zn0.6Fe2O4 (X = Co, Mn) nanoparticles have been synthesized by co-precipitation method and characterized for structural, morphology, and magnetic properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The Rietveld refinement method is employed to refine the XRD powder data, and the structural parameters are calculated from the refinement. Substitution of cobalt and manganese causes the lattice parameter to decrease. Particle size, measured from XRD, lies in the nanometer regime. A low saturation magnetization value is obtained in both samples, and the presence of non-collinear spin arrangement is found at octahedral sites. The maximum entropy method (MEM) is employed to study the strength of the bond between the atoms at tetrahedral and octahedral sites in the unit cell of ferrites. Optical band gap energy of the samples is determined by using UV–VIS techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []