Theoretical calculation boosting the chemical vapor deposition growth of graphene film

2021 
Chemical vapor deposition (CVD) is a promising method for the mass production of high-quality graphene films, and great progress has been made over the last decade. Currently, the CVD growth of graphene is being pushed to achieve further advancements, such as super-clean, ultra-flat, and defect-free materials, as well as controlling the layer, stacking order, and doping level during large-scale preparation. The production of high-quality graphene by CVD relies on an in-depth knowledge of the growth mechanisms, in which theoretical calculations play a crucial role in providing valuable insights into the energy-, time-, and scale-dependent processes occurring during high-temperature growth. Here, we focus on the theoretical calculations and discuss the recent progress and challenges that need to be overcome to achieve controllable growth of high-quality graphene films on transition-metal substrates. Furthermore, we present some state-of-the-art graphene-related structures with novel properties, which are expected to enable new applications of graphene-based materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    0
    Citations
    NaN
    KQI
    []