Optical design study, testing and qualification of a Schwarzschild-Couder telescope for CTA and an assessment on the Intensity Interferometry capabilities with CTA

2015 
There is a growing common effort in the very high energy community towards the development of new research infrastructures to answer the fundamental questions of modern high-energy astrophysics and astroparticle physics. The Cherenkov Telescope Array Observatory (CTAO) is an international project aiming to deploy two separate arrays to observe the whole VHE sky between E = 20 GeV up to E = 300 TeV in a long term plan of about 30 years of operations. CTA is designed to increase the sensitivity by a factor 10 at 1 TeV, to enlarge the detection area, the angular resolution and the field of view over the facilities operating today. The observatory will be characterized by high flexibility, enhanced monitoring and deep survey capabilities, short time scale and simultaneous observations in multiple fields. This PhD thesis addresses the optical design study and testing of dual mirror Imaging Atmospheric Cherenkov Telescopes (IACTs) for the incoming CTAO. All of the IACTs facilities currently operating rely on single mirror solutions, which are mostly parabolic or Davies-Cotton optical designs, however there is a novel interest in the development of dual mirror configurations following the Schwarzschild-Couder optical design. This peculiar design, based on two highly aspherical mirrors promises wide-field, aplanatic telescopes characterized by small f-numbers and more compact structures. Dual mirror solutions allow use smaller camera pixels (3-6 mm) based on Silicon Photo Multiplier technology in substitution of the larger Photo Multiplier Tubes (1 inch) currently in use. The increased complexity in terms of optics manufacturing, replication and alignment is motivated from the attractive new capabilities of such configuration. In this context the Italian National Institute for Astrophysics (INAF) supported by the Italian Ministry of Education, University and Research (MIUR), is developing a small sized telescope prototype for CTA, named ASTRI, which is based upon the Schwarzschild-Couder optical design. The present work deals with the challenging realization of this optical configuration that has never been applied to IACTs. After two introductory chapters on the gamma-ray astronomy and the ASTRI optical design and its main subsystems (chapters 1 and 2), the performances of this system are compared with those of the other common wide-field telescopes in use for Cherenkov observations and for other applications in astrophysics (chapter 3). This comparative study is based on a commercial ray tracing software into which the optical designs of the envisaged telescopes are reproduced. Subsequently in chapter 4, an extended study of the ASTRI capabilities in relation to the performance and environmental requirements issued by CTA is presented in a detailed analysis of compliance supported by ray tracing simulations, finite element analysis and tolerance studies. In chapter 5 the work on the qualification tests of the secondary mirror gives an insight into the complexity of the Schwarzschild-Couder optics. The realization of this optical element is challenging in relation to currently available technologies, in particular concerning the cost requirements imposed by the CTA project. These constraints and the large sagitta of the mirror (190 mm) requires the use of the hot slumping technique in substitution of the cold slumping and diamond milling approaches usually used in the manufacturing of mirrors for Cherenkov applications. The results of a careful and extended test campaign on a mirror prototype have indicated that this manufacturing technique can provide a reliable engineering process of production for such large, highly aspherical optics. With a perspective on the science with future large telescopes as those provided by CTA, an assessment study upon the potentialities of the Intensity Interferometry (II) technique is carried out in chapter 6. In particular, a new kind of observation based on II is explored; the method aims to estimate the direct distance of the celestial objects. The order of magnitudes of the problem parameters space and the sensitivity that CTA and other future large observatories should achieve is estimated by means of numerical simulations. A short-term concept of experiment to assess the reliability of this new method is also discussed in relation to a pilot measurement that could be pursued with the state of the art technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []